
Learning from Failures:
Secure and Fault-Tolerant Aggregation for Federated Learning

Mohamad Mansouri

mohamad.mansouri@eurecom.fr

Thales SIX GTS / EURECOM

Palaiseau, France

Melek Önen

melek.onen@eurecom.fr

EURECOM

Sophia Antipolis, France

Wafa Ben Jaballah

wafa.benjaballah@thalesgroup.com

Thales SIX GTS

Palaiseau, France

ABSTRACT
Federated learning allows multiple parties to collaboratively train

a global machine learning (ML) model without sharing their pri-

vate datasets. To make sure that these local datasets are not leaked,

existing works propose to rely on a secure aggregation scheme

that allows parties to encrypt their model updates before sending

them to the central server that aggregate the encrypted inputs. In

this work, we design and evaluate a new secure and fault-tolerant

aggregation scheme for federated learning that is robust against

client failures. We first propose a threshold-variant of the secure

aggregation scheme proposed by Joye and Libert. Using this new

building block together with a dedicated decentralized key manage-

ment scheme and a dedicated input encoding solution, we design a

privacy-preserving federated learning protocol that, when executed

among 𝑛 clients, can recover from up to
𝑛
3
failures. Our solution

is secure against a malicious aggregator who can manipulate mes-

sages to learn clients’ individual inputs. We show that our solution

outperforms the state of the art fault-tolerant secure aggregation

schemes in terms of computation cost on both the client and the

server sides. For example, with a ML model of 100, 000 parameters,

trained with 600 clients, our protocol is 5.5x faster (1.6x faster in

case of 180 clients drop) at the client and 1.3x faster at the server.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Secu-
rity protocols.

KEYWORDS
Federated Learning, Secure Aggregation, Fault-Tolerance

ACM Reference Format:
Mohamad Mansouri, Melek Önen, and Wafa Ben Jaballah. 2018. Learning

from Failures: Secure and Fault-Tolerant Aggregation for Federated Learning.

In Proceedings of ACM Conference (Conference’17).ACM, New York, NY, USA,

13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Machine learning (ML) nowadays plays a very important role in

various domains such as autonomous cars, healthcare systems,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

recommendation systems, etc. The efficiency and accuracy of ML

models usually rely on the processing of very large amount of data

that are collected from multiple data sources and that are often

privacy-sensitive. To cope with the privacy protection of such data,

the federated learning paradigm has recently emerged: Federated

learning can be defined as a collaborative ML technique whereby

multiple clients obtain a joint model by locally training themodel on

their private dataset and sending parameter updates to the server.

The server computes the sum of clients’ updates and sends the

average back to the clients. The clients repeat the training process

in several rounds so that a converged average model is reached.

While federated learning is promising, as shown in [25, 26], a naïve

use of such a scheme can still result in some leakage based on the

exchange of model parameters and thus model updates also need

to be protected.

Secure aggregation [27, 20] which ensures the aggregation of

multiple parties’ inputs without disclosing them individually, be-

comes a common solution to address this problem in federated

learning. An aggregator receiving protected model updates from

clients is still able to compute their aggregate. Unfortunately, the

majority of secure aggregation solutions require all clients to be

online [33, 18, 1, 10]. If a client fails to provide its protected input,

the server will not be able to compute the sum.

In some federated learning applications, clients are mobile de-

vices that may frequently encounter failures (for example, due to

network connectivity problems) and hence existing secure aggrega-

tion solutions fall short to address such a problem. A previous work

from Bonawitz et al. [5] develops a fault-tolerant secure aggrega-

tion that enables the server to recover the aggregate from up to 𝑡

out of 𝑛 client failures. The authors design their solution based on

a secure masking scheme [10]: clients use one-time-pad encryption

(i.e., modular addition) with a unique mask to protect their inputs.

The masks are chosen such that their sum is zero and are obtained

through the Diffie-Hellman (DH) key exchange scheme [9] protocol

executed by each pair of clients. Additionally, DH keys are shared

among 𝑛 clients using Shamir’s secret sharing [32] in order to re-

cover them in case of client failures. This scheme has been used

as a building block for a significant number of privacy-preserving

federated learning solutions [6, 15, 4, 3, 37, 19, 35, 41, 17, 36].

Unfortunately, this solution still incurs a significant computation

and communication overhead originating from the execution of

the DH key exchange protocol among each pair of clients and the

generation of the mask at each FL round. This is mainly due to the

fact that the mask can only be used once. Encryption schemes with

long-term keys seemmore promising for federated learning. Indeed,

long-term keys are distributed once in the setup phase and then

used to protect the clients’ models in all the consecutive federated

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference’17, July 2017, Washington, DC, USA Mansouri et al.

FL
 w

ith
 S

ec
ur

e
A

gg
re

ga
tio

n

Fe
de

ra
te

d
L

ea
rn

in
g =+ +

Se
rv
er

=

Se
rv
er

Figure 1: Illustration of federated learning with and without
secure aggregation. The clients locally train the model on
their own private dataset. Clients send their trained models
(protected when using secure aggregation) to the server. The
server aggregates the models and server learns only the ag-
gregate when using secure aggregation.

learning rounds. This eliminates the need for a key agreement at

each federated learning round.

Hence, we propose to use the Joye-Libert (JL) secure aggregation

scheme [18] for federated learning since, it allows the protection

of a user input with its own unique long-term key. On the other

hand, unfortunately, similar to existing schemes, the JL scheme

does not support client failures. Therefore, we propose to revisit

the Joye-Libert (JL) scheme in order to cope with client failures

and further make use of it to develop a secure and fault-tolerant

aggregation scheme dedicated to federated learning applications.

The new version of the scheme allows sharing the client’s individual

keys using Shamir’s secret sharing [32] so that when some clients

fail to submit their protected inputs, 𝑡 out of 𝑛 clients use the key

shares of the failed clients’ to provide a ciphertext representing

the protected zero-value of the failed clients. The aggregator can

use the protected zero-value to correctly aggregate the inputs of

the online clients. Compared to [5], we provide a more efficient

fault-tolerant secure aggregation scheme since it does not require

to redistribute the protection keys for each FL round.

Our contributions can be summarized as follows:

• We design a threshold version of the Joye-Libert scheme [18]

by allowing clients to secret share their individual keys. The

new scheme allows a set of available clients to compute the

encryption of a zero-value, in case of someone drops, on

behalf of the missing client.

• We propose a fault-tolerant secure aggregation protocol us-

ing our threshold Joye-Libert scheme. Our scheme completes

the aggregation in two communication rounds (among the

server and the clients) which is less than in [5] (four com-

munication rounds).

• We implement a prototype of our protocol and evaluate it

through a comparative study with the protocol in [5].

• Through our experimental study we show that our solution

outperforms the solution in [5] in terms of computation at

the client side and supports more failures with the same

computational cost at the server side.

• We provide a theoretical security analysis of our protocol

and we show that our protocol is secure in both the passive

and active adversary models.

2 BACKGROUND AND THREAT MODEL
Federated Learning. In federated learning (FL), a set U of FL

clients locally train a common machine learning modelM. Each

client 𝑢 ∈ U uses it own private training dataset D𝑢 to train the

model. At FL round 𝜏 , a FL client runs the training algorithm (eg.,

Stochastic Gradient Descent (SGD) [7]) on the current modelM𝜏 .

As a result of the training, it locally updates the modelM𝑢,𝜏+1 ←
𝑡𝑟𝑎𝑖𝑛(M𝜏 ,D𝑢). All the FL clients send the updated model param-

eters to the FL server which aggregates them by computing their

average:

M𝜏+1 ←
∑𝑛
𝑢=1M𝑢,𝜏+1

𝑛

Finally, the FL server sends the aggregatedmodelM𝜏+1 to all clients,
then a new FL round starts. The process is repeated until the model

M𝑇 is learned after 𝑇 rounds.

Although FL clients keep their own datasets private, studies have

shown that adversaries who have access to the client’s updated

modelM𝑢,𝜏+1 can infer information about its private dataset D𝑢
[25, 26]. Hence the local models should remain confidential even

against the FL server.

Secure Aggregation. Secure aggregation (SA) is a protocol that

involves multiple users and one aggregator. Each user holds a pri-

vate input and the aggregator computes the sum. It requires that

the aggregator cannot learn more than the sum of the users’ inputs.

Secure aggregation is used for federated learning to privately ag-

gregate the clients’ updates in each federated learning round using

the FL server as the aggregator. Figure 1 demonstrates a FL protocol

with and without secure aggregation.

Threat model. We consider a threat model where an untrusted

FL server colludes with some clients. Additionally, we consider

some of the honest clients to unintentionally fail (i.e., drop from

the protocol) in some federated learning rounds. The failures can

happen at any stage of the protocol. The adversary (controlling the

server and the colluding clients) is interested in discovering any

private information about the individual inputs of the honest clients.

We consider two adversary settings in which we later analyze the

security of our protocol. (i) Passive model: the adversary correctly

follows the protocol steps but tries to discover private information

about clients’ local models by looking at the protocol transcript. (ii)

Active model: the adversary manipulates the messages in order to

learn the clients’ private information. We assume a trusted party

to generate the public parameters of our protocol.

Attacks that aim to change the result of the aggregated data or

to perform some denial of service are out of the scope. Addition-

ally, we do not consider attacks where the adversary impersonates

existing clients as they can be prevented by deploying a public key

infrastructure with signed certificates. Note that this threat model

is common among secure aggregation protocols and it is the same

as the one adopted by [5] except for the dependency on a trusted

party for the setup. We show later how to avoid this dependency.

3 PRELIMINARIES
In this section, we present the main cryptographic primitives that

are used as building blocks for our protocol.

Secure and Fault-Tolerant Aggregation for Federated Learning Conference’17, July 2017, Washington, DC, USA

3.1 Pseudo Random Generator
𝐵 ← PRG(𝑏): is a pseudo random generator that can extend a seed

𝑏 ∈ Z to a vector 𝐵 ∈ Z𝑚
𝑅
(vector of𝑚 elements and each element

is in [0, 𝑅))

3.2 Shamir’s Secret Sharing
A 𝑡-out-of-𝑛 Shamir’s secret sharing scheme (SS) [32] defined in a

field F, consists of two PPT algorithms:

• {(𝑢, [𝑠]𝑢)}∀𝑢∈U ←SS.Share(𝑠, 𝑡,U): splits a secret 𝑠 ∈ F
into 𝑛 shares [𝑠]𝑢 ∈ F, each of them for one user 𝑢 ∈ U.

The user identifier 𝑢 are elements of the field F representing
unique users, 𝑡 is the reconstruction threshold, and 𝑛 is the

size of the users setU. The algorithm first generates a poly-

nomial 𝑝 (𝑥) of uniformly random coefficients and of degree

𝑡−1 such that 𝑝 (0) = 𝑠 . It then computes 𝑝 (𝑢) = [𝑠]𝑢∀𝑢 ∈ U.

• 𝑠 ←SS.Recon({(𝑢, [𝑠]𝑢)}∀𝑢∈U′ , 𝑡): reconstructs the secret
𝑠 ∈ F from at least 𝑡 shares. It is required thatU′ ⊂ U and

|U′ | ≥ 𝑡 . The algorithm uses the Lagrange interpolation

formula [24] to compute the value of 𝑝 (0) as follows (all
operation are in the field F):

𝑠 =
∑︁
∀𝑢∈U′

𝜆𝑢 [𝑠]𝑢 𝜆𝑢 =
∏

∀𝑣∈U′\{𝑢}

𝑣

𝑣 − 𝑢

3.3 Secret Sharing Over the Integers
We use a variant of Shamir’s secret sharing which is defined over

the integers (rather than in a field). The secret sharing scheme over

the integers is defined by Rabin [31] and we denote it by ISS. The
scheme shares a secret integer 𝑠 in an interval [−𝐼 , 𝐼] and provides𝜎-
bits statistical security where 𝜎 is a security parameter. It is defined

by the two PPT algorithms:

• {(𝑢, [Δ𝑠]𝑢)}∀𝑢∈U ←ISS.Share(𝑠, 𝑡,U = {1, .., 𝑛}): splits a
secret 𝑠 ∈ [−𝐼 , 𝐼] into 𝑛 shares [Δ𝑠]𝑢 , each of them for one

user 𝑢 ∈ U such that 𝑡 is the reconstruction threshold. The

algorithm first generates a polynomial 𝑝 (𝑥) of uniformly

random coefficients in [−2𝜎Δ2𝐼 , 2𝜎Δ2𝐼] and of degree 𝑡 − 1
such that 𝑝 (0) = Δ𝑠 where Δ = 𝑛!. It then computes [Δ𝑠]𝑢 =

𝑝 (𝑢) ∀𝑢 ∈ U.

• 𝑠 ←ISS.Recon({(𝑢, [Δ𝑠]𝑢)}∀𝑢∈U′ , 𝑡): reconstructs the se-
cret 𝑠 ∈ [−𝐼 , 𝐼] from at least 𝑡 shares. It is required that

U′ ⊂ U and |U′ | ≥ 𝑡 . The algorithm uses the Lagrange in-

terpolation formula to compute the value of 𝑝 (0) as follows:

𝑠 =

∑
∀𝑢∈U′

𝜇𝑢 [Δ𝑠]𝑢

Δ2
𝜇𝑢 =

Δ ·∏𝑣∈U′\{𝑢} (𝑣)∏
𝑣∈U′\{𝑢} (𝑣 − 𝑢)

3.4 Key Agreement Scheme
Weuse theDiffie-Hellman key agreement schemeKA. It is parametrized

with a security parameter 𝜆 consisting of three PPT algorithms:

• 𝑝𝑝 = (𝑝, 𝑞, 𝑔) ← KA.Param(𝜆): Given a security parameter

𝜆 it generates two large primes 𝑝 and 𝑞 such that 𝑞 divides

𝑝 − 1 and outputs an element 𝑔 ∈ Z∗𝑝 of order 𝑞.

• (𝑐𝑃𝐾𝑢 , 𝑐𝑆𝐾𝑢) ← KA.Gen(𝑝𝑝): This algorithm generates key

pairs from public parameter where (𝑐𝑃𝐾𝑢 , 𝑐𝑆𝐾𝑢) = (𝑔𝑎, 𝑎) and
𝑎

𝑅←− †Z∗𝑞 .

• 𝑐𝑢,𝑣 ←KA.Agree(𝑝𝑝, 𝑐𝑆𝐾𝑢 , 𝑐𝑃𝐾𝑣 , 𝐻): This algorithm uses the

private key of user 𝑢, the public key of user 𝑣 , and a hash

function to generate a secret authentication and encryption

key as 𝑐𝑢,𝑣 = 𝐻 ((𝑐𝑃𝐾𝑣)𝑐
𝑆𝐾
𝑢).

3.5 Authenticated Encryption
An authenticated encryption scheme AE parametrized with a secu-

rity parameter 𝜆 and a security key 𝑘 ∈ {0, 1}𝜆 consists of two PPT

algorithms:

• 𝑐 ←AE.Enc(𝑘,𝑚): This algorithm uses the encryption key

𝑘 to encrypt and authenticates a message𝑚.

• 𝑚 ←AE.Dec(𝑘, 𝑐): This algorithm uses the same key to

decrypt the ciphertext 𝑐 and to verify its integrity.

3.6 Joye-Libert Secure Aggregation Scheme
This secure aggregation scheme that we denote by JL is proposed

in [18]. The scheme involves a trusted key-dealer, 𝑛 users and the

aggregator. JL can be defined as follows:

• (𝑠𝑘0, {𝑠𝑘𝑢 }𝑢∈{1,..,𝑛} , 𝑁 , 𝐻) ← JL.Setup(𝜆): Given some se-

curity parameter 𝜆, this algorithm generates two equal-size

prime numbers 𝑝 and 𝑞 and sets 𝑁 = 𝑝𝑞. It randomly gen-

erates 𝑛 secret keys 𝑠𝑘𝑢
𝑅←− ±{0, 1}2𝑙 where 𝑙 is the number

of bits of 𝑁 and sets 𝑠𝑘0 = −
∑𝑛
1
𝑠𝑘𝑢 . Then, it defines a cryp-

tographic hash function 𝐻 : Z→ Z∗
𝑁 2

. It outputs the 𝑛 + 1
keys and the public parameters (𝑁,𝐻) .
• 𝑦𝑢,𝜏 ← JL.Protect(𝑝𝑝, 𝑠𝑘𝑢 , 𝜏, 𝑥𝑢,𝜏): This algorithm encrypts

the private input 𝑥𝑢,𝜏 ∈ Z𝑁 for time period 𝜏 using secret

key 𝑠𝑘𝑢 ∈ Z𝑁 2 . It outputs cipher 𝑦𝑢,𝜏 such that:

𝑦𝑢,𝜏 = (1 + 𝑥𝑢,𝜏𝑁) · 𝐻 (𝜏)𝑠𝑘𝑢 mod 𝑁 2
(1)

• 𝑋𝜏 ← JL.Agg(𝑝𝑝, 𝑠𝑘0, 𝜏, {𝑦𝑢,𝜏 }𝑢∈{1,..,𝑛}): This algorithm ag-

gregates the 𝑛 ciphers received at time period 𝜏 to obtain

𝑦𝜏 =
∏𝑛

1
𝑦𝑢,𝜏 and decrypts the result. It obtains the sum of

the private inputs (𝑋𝜏 =
∑𝑛
1
𝑥𝑢,𝜏) as follows:

𝑉𝜏 = 𝐻 (𝜏)𝑠𝑘0 · 𝑦𝜏 𝑋𝜏 =
𝑉𝜏 − 1
𝑁

mod 𝑁 (2)

Theorem 3.1. The scheme provides Aggregator Obliviousness se-
curity under the Decision Composite Residuosity (DCR) assumption
[29] in the random oracle model and under the assumption that each
user encrypts only one value per time period.

Proof. Please refer to the original paper [18]. □

4 OUR APPROACH
The Joye-Libert (JL) scheme [18] allows 𝑛 users to each encrypt

its private input with a unique long-term pre-distributed key. The

scheme is homomorphic on both, the messages and the encryption

keys. This allows an aggregator holding the sum of the user keys to

decrypt the aggregate of themessages. Since this secure aggregation

scheme supports long-term keys, it features a significant advantage

†
𝑅←− means chosen uiformally at random

Conference’17, July 2017, Washington, DC, USA Mansouri et al.

in terms of computation and communication as it allows using the

same keys for all federated learning rounds. However, using JL
scheme for federated learning introduces the following challenges:

• Client failures: It is common in federated learning that some

clients drop in several federated learning rounds. When one

or more clients do not provide a ciphertext for the federated

learning round 𝜏 , the aggregation fails. This is because the

aggregation key used to aggregate the ciphertext is equal to

the sum of the user keys. If a client fails, its encryption key

will not be involved in the aggregation. We deal with this

problem by designing a threshold version of JL scheme to

recover from dropouts.

• Larger inputs: In federated learning, the inputs are the pa-

rameters of the client’s model and are of vector type. JL is

originally designed to encrypt single integers. We extend JL
to support vector inputs.

• No trusted key dealer: JL requires a key dealer to distrib-

ute some keys to the users and the aggregator. However, a

trusted key dealer may not be feasible in federated learning

applications. Therefore, we propose a decentralied key setup

phase to distribute the keys.

Threshold variant of JL scheme. We design a threshold JL scheme,

whereby clients can secretly share their individual keys with other

clients so that when one or more clients fail, 𝑡 out of 𝑛 clients that

are still online help provide a protected zero-value that is computed

with the failed clients’ individual keys. By computing the protected

zero-value of the missing clients, the server can correctly compute

the aggregated result.

JL scheme with vector inputs. We propose to encode the vector

elements in a single integer. Then, JL protection and aggregation

algorithms are computed on the encoded integers. The vector sum

is decoded after aggregation.

JL scheme with decentralized key setup. To avoid relying on a

trusted key dealer for generating the keys, we use a distributed key

generation mechanism. We mainly use secure multi-party computa-

tion such that the 𝑛 users and the aggregator each holds a random

share of zero. Each user will use its share as a secret key so that the

sum of the keys with the aggregator key equals to zero.

5 THRESHOLD JOYE-LIBERT SCHEME
In this section, we describe a threshold-variant of the Joye-Libert
secure aggregation scheme (see section 3.6 for the original scheme).

The design of this scheme mainly transplants the design of the

threshold variant of the Paillier encryption scheme [8] into this

context. This extended solution will mainly help the server recover

failed users’ inputs (which consists of the protection of the zero-

value under each failed user’s individual key) and hence compute

the final aggregate value. The goal is to distribute a user key 𝑠𝑘𝑢
to the 𝑛 users such that any subset of at least 𝑡 (online) users can

produce a ciphertext on behalf of user𝑢 while less than 𝑡 users have

no useful information. Themain building block to distribute the user

key is integer secret sharing scheme where inputs are in {0, 1}2𝑙
and 𝑙 corresponds to the bit-size of the modulus 𝑁 . Hence, the

threshold-variant Joye-Libert secure aggregation scheme, denoted

as TJL, consists of the following PPT algorithms:

• (𝑠𝑘0, {𝑠𝑘𝑢 }𝑢∈{1,..,𝑛} , 𝑁 , 𝐻, 𝜎) ← TJL.Setup(𝜆): Given some

security parameter 𝜆, this algorithm basically calls the origi-

nal JL.Setup(𝜆) algorithm and outputs the server key, one

secret key per user and the public parameters. Additionally,

it chooses the security parameter of the ISS scheme 𝜎 .

• {(𝑣, [Δ𝑠𝑘𝑢]𝑣)}∀𝑣∈U ← TJL.SKShare(𝑠𝑘𝑢 , 𝑡,U): On input

of user𝑢’s secret key, this algorithm calls ISS.Share(𝑠𝑘𝑢 , 𝑡,U)
(see Section 3.3) where the interval of the secret 𝑠𝑘𝑢 is [−2𝑙 , 2𝑙]
and 𝑙 is the number of bits of the modulus 𝑁 . Indeed, simi-

lar to [28], in our solution, we construct a secret sharing of

the private key 𝑠𝑘𝑢 over the integers. Hence, this algorithm

outputs 𝑛 shares of user 𝑢’s key 𝑠𝑘𝑢 , each share [Δ𝑠𝑘𝑢]𝑣 is
intended for different user 𝑣 ∈ U.

• [𝑦′𝜏]𝑢 ← TJL.ShareProtect(𝑝𝑝, {[Δ𝑠𝑘𝑣]𝑢 }𝑣∈U′′ , 𝜏): This
algorithm protects a zero-value with user 𝑢’s shares of

all the secret keys corresponding to the failed users (𝑣 ∈
U′′) ([Δ𝑠𝑘𝑣]𝑢 is the user 𝑢’s share of the secret key

𝑠𝑘𝑣 corresponding to the failed user 𝑣). It basically calls

JL.Protect(𝑝𝑝,∑𝑣∈U′′ [Δ𝑠𝑘𝑣]𝑢 , 𝜏, 0) and outputs [𝑦′𝜏]𝑢 =

𝐻 (𝜏)
∑
𝑣∈U′′ [Δ𝑠𝑘𝑣]𝑢 mod 𝑁 2

. This algorithm is called when

there are failed users that their inputs should be recovered.

• 𝑦′𝜏 ← TJL.ShareCombine({(𝑢, [𝑦′𝜏]𝑢 , 𝑛)}∀𝑢∈U′ , 𝑡): This
algorithm combines 𝑡 out of 𝑛 protected shares of the pro-

tected zero-value for time step 𝜏 and given Δ = 𝑛!. U′ is
a subset of the online users such that |U′ | ≥ 𝑡 and U′′ is
the set of failed users. Similar to the solution in [28], it com-

putes the Lagrange interpolation on the exponent (the 𝜇𝑢
coefficients are defined in ISS.Recon in Section 3.3):

𝑦′𝜏 =
∏
∀𝑢∈U′

([𝑦′𝜏]𝑢)𝜇𝑢 = 𝐻 (𝜏)
∑
𝑢∈U′ 𝜇𝑢

∑
𝑣∈U′′ [Δ𝑠𝑘𝑣]𝑢

= 𝐻 (𝜏)
∑
𝑣∈U′′

∑
𝑢∈U′ 𝜇𝑢 [Δ𝑠𝑘𝑣]𝑢

= 𝐻 (𝜏)Δ
2
∑
𝑣∈U′′ 𝑠𝑘𝑣

• 𝑦𝑢,𝜏 ← TJL.Protect(𝑝𝑝, 𝑠𝑘𝑢 , 𝜏, 𝑥𝑢,𝜏): This algorithm mainly

calls JL.Protect(𝑝𝑝, 𝑠𝑘𝑢 , 𝜏, 𝑥𝑢,𝜏) and hence outputs the ci-

pher 𝑦𝑢,𝜏 . This algorithm is mainly used by all users to pro-

tect their input before the aggregator collects them.

• 𝑋𝜏 ← TJL.Agg(𝑝𝑝, 𝑠𝑘0, 𝜏, {𝑦𝑢,𝜏 }∀𝑢∈U′ , 𝑦′𝜏): On input the

public parameters 𝑝𝑝 , the aggregation key 𝑠𝑘0, the individ-

ual ciphertexts of online users (𝑢 ∈ U′), and the ciphertexts

of the zero-value corresponding to the failed users, this al-

gorithm aggregates the ciphers of time period 𝜏 by first

multiplying the inputs for all online users, raising them to

the power Δ2
, and multiplying the result with the cipher-

text of the zero-value. U′ is that set of online users and

Secure and Fault-Tolerant Aggregation for Federated Learning Conference’17, July 2017, Washington, DC, USA

Se
rv

er

Protect() ShareProtect()

ShareCombine()

Agg()

SKShare()

Se
rv

er

Offline Online

Figure 2: Demonstration of an execution of TJL scheme with four users (𝑛 = 4) and a reconstruction threshold 𝑡 = 2.

U′′ = U \U′ is the set of failed users. It computes:

𝑦𝜏 = (
∏
∀𝑢∈U′

𝑦𝑢,𝜏)Δ
2

· 𝑦′𝜏 mod 𝑁 2

= (1 + Δ2

∑︁
∀𝑢∈U′

𝑥𝑢,𝜏𝑁)𝐻 (𝜏)
Δ2

∑
∀𝑢∈U′

𝑠𝑘𝑢
· 𝐻 (𝜏)

Δ2
∑

∀𝑢∈U′′
𝑠𝑘𝑢

= (1 + Δ2

∑︁
∀𝑢∈U′

𝑥𝑢,𝜏𝑁)𝐻 (𝜏)
Δ2

∑
∀𝑢∈U

𝑠𝑘𝑢

= (1 + Δ2

∑︁
∀𝑢∈U′

𝑥𝑢,𝜏𝑁)𝐻 (𝜏)−Δ
2𝑠𝑘0

(3)

To decrypt the final result, the algorithm proceeds as follows:

𝑉𝜏 = 𝐻 (𝜏)Δ
2𝑠𝑘0 · 𝑦𝜏 𝑋𝜏 =

𝑉𝜏 − 1
𝑁Δ2

mod 𝑁 (4)

Theorem 5.1. This scheme provides Aggregator Obliviousness
security under the DCR assumption in the random oracle model if the
number of corrupted users is less than the threshold 𝑡 .

Proof. The security of this scheme mainly relies on the security

of the JL secure aggregation scheme which is proved secure under

the DCR assumption (Theorem 3.1) and the security of the secret

sharing scheme over integers which is also proved to be statistically

secure in Theorem 1 in [39]. □

6 FAULT-TOLERANT SECURE AGGREGATION
USING TJL

In this section, we describe the newly designed secure and fault-

tolerant aggregation protocol based on the proposed TJL scheme.

The protocol consists of a setup phase and an online phase each

defined with two communication rounds. The setup phase is per-

formed a single time, while the online phase is repeated for each

federated learning round. We describe the details of each protocol

phase.

6.1 The Setup Phase
The setup phase achieves two main goals: the registration of the

clients and the distribution of the security keys. According to TJL
scheme, a trusted key dealer is needed to generate the keys. How-

ever, it is not practical for some FL applications that the clients

should request keys from a trusted party. To avoid the dependence

on a key dealer, we propose a distributed method to setup the TJL
user keys.

Distribution of TJL keys. We recall that the aggregator’s key 𝑠𝑘0
allows the aggregator to recover the sum of the inputs from the

set of users’ ciphertexts (see Equation 3). The goal of this key is

to protect the final aggregate. In the case of FL applications, the

aggregated ML model is considered public so there is no need to

hide it from adversaries. Therefore, we can set the aggregator’s key

to a public known value (for example zero). Indeed, the security

proof in [18] considered the case where an adversary controls the

key of the aggregator. In such case, the scheme cannot protect

the result of the aggregation but it still protects the individual

inputs of the users which is sufficient for FL. To generate the user

keys, each two clients 𝑢 and 𝑣 agree using the KA scheme on a

shared mutual key 𝑠𝑘𝑢,𝑣 . Then client 𝑢 computes its protection

key 𝑠𝑘𝑢 ←
∑
𝑣∈U (𝛿𝑢,𝑣 · 𝑠𝑘𝑢,𝑣) where 𝛿𝑢,𝑣 = 1 when 𝑢 > 𝑣 , and

𝛿𝑢,𝑣 = −1 when 𝑢 < 𝑣 . The correctness of the protocol is preserved

since: ∑︁
∀𝑢∈U

𝑠𝑘𝑢 =
∑︁
∀𝑢∈U

(
∑︁
∀𝑣∈U

𝛿𝑢,𝑣 · 𝑠𝑘𝑢,𝑣) = 0 = −𝑠𝑘0

Note that this distributed method allows the distribution of the JL
user keys but it does not completely release the dependency on a

trusted third party to generate the public parameters. There are

some techniques to distribute the computation of the public modu-

lus 𝑁 presented in [28, 39]. In this work, we assume a trusted offline

third party to distribute the public parameters and we consider the

full independency on a trusted party as future work.

The protocol steps. During Registration step, clients register by

sending their public keys and the aggregator broadcasts them to the

other clients. Notice that each client generates two public keys, one

used to create secret communication channels between clients and

the other used to compute the TJL secret key. Later in the Key Setup
step, each client uses the key agreement and the clients’ public keys

to agree on mutual channel keys 𝑐𝑢,𝑣 and to compute its TJL key

𝑠𝑘𝑢 . It also creates secret shares of the TJL keys using TJL.SKShare
and sends them to the corresponding clients (passing by the server

through the authenticated channels). The specifications of the setup

phase are shown in Figure 3.

6.2 The Online Phase
The online phase is composed of two communication rounds. In

the first communication round, (i.e., Encryption step), the clients

protect their inputs and sends them to the aggregator. In the second

communication round (i.e, Aggregation step), the clients and the

aggregator construct the ciphertext of the failed clients.

Conference’17, July 2017, Washington, DC, USA Mansouri et al.

Secure Aggregation Protocol - Setup Phase

• Setup - Registration:
Trusted Dealer:
– Choose security parameters 𝜆 and runs 𝑝𝑝𝐾𝐴 ← KA.Param(𝜆) and (⊥,⊥, 𝑁 ,𝐻, 𝜎) ← TJL.Setup(𝜆) . It sets the public parameters 𝑝𝑝 = (𝑝𝑝𝐾𝐴, 𝑁 ,𝐻, 𝜎, 𝑡, 𝑛,𝑚, 𝑅, F)

such that 𝑡 is the secret sharing threshold, 𝑛 is the number of clients, Z𝑚
𝑅

is the space from which inputs are sampled, and F is the field for SS scheme. It sends them to the

server and to all the clients.

User 𝑢 (𝑝𝑝):
– Receive the public parameters from the trusted dealer.

– Generate key pairs (𝑐𝑃𝐾𝑢 , 𝑐𝑆𝐾𝑢) ← KA.gen(𝑝𝑝𝐾𝐴), (𝑠𝑃𝐾𝑢 , 𝑠𝑆𝐾𝑢) ← KA.gen(𝑝𝑝𝐾𝐴)
– Send (𝑐𝑃𝐾𝑢 | | 𝑠𝑃𝐾𝑢) to the server (through the private authenticated channel) and move to next round.

Server(𝑝𝑝):
– Receives public parameters 𝑝𝑝 from the trusted dealer.

– Collect all public keys from the users (denote with U the set of registered users). Abort if |U | < 𝑡 otherwise move to the next round.

– Broadcast to all users the list {𝑢, (𝑐𝑃𝐾𝑢 , 𝑠𝑃𝐾𝑢) }∀𝑢∈U
• Setup - Key Setup:

User 𝑢:
– Receive the public keys of all registered users U
– For each registered user 𝑣 ∈ U \ {𝑢}, compute channel keys 𝑐𝑢,𝑣 ← KA.agree(𝑝𝑝𝐾𝐴, 𝑐𝑆𝐾𝑢 , 𝑐𝑃𝐾𝑣 , 𝐻) .
– For each registered user 𝑣 ∈ U \ {𝑢}, compute 𝑠𝑘𝑢,𝑣 ← KA.agree(𝑝𝑝𝐾𝐴, 𝑠𝑆𝐾𝑢 , 𝑠𝑃𝐾𝑣 , 𝐻 ∗

) (set 𝑠𝑘𝑢,𝑢 = 0). Then compute the TJL secret key 𝑠𝑘𝑢 ←
∑︁
𝑣∈U

𝛿𝑢,𝑣 · 𝑠𝑘𝑢,𝑣 where

𝛿𝑢,𝑣 = 1 when 𝑢 > 𝑣, and 𝛿𝑢,𝑣 = −1 when 𝑢 < 𝑣.

– Generate 𝑡 -out-of- |U | shares of the TJL secret key: { (𝑣, [𝑠𝑘𝑢]𝑣) }∀𝑣∈U ← TJL.SKShare(𝑠𝑘𝑢 , 𝑡,U) .
– For each registered user 𝑣 ∈ U \ {𝑢}, encrypt its corresponding shares: 𝜖𝑢,𝑣 ← AE.enc(𝑐𝑢,𝑣 ,𝑢 | | 𝑣 | | [𝑠𝑘𝑢]𝑣) .
– If any of the above operations fails, abort.

– Send all the encrypted shares {𝜖𝑢,𝑣 }∀𝑣∈U to the server (each implicitly containing addressing information 𝑢, 𝑣 as metadata).

– Store all messages received and values generated in the setup phase, and move to the online phase.

Server:
– Collect from each user 𝑢 its encrypted shares { (𝑢, 𝑣, 𝜖𝑢,𝑣) }∀𝑣∈U .
– Forward to each user 𝑣 ∈ U its corresponding encrypted shares: { (𝑢, 𝑣, 𝜖𝑢,𝑣) }∀𝑢∈U and move to the online phase.

∗
A Full Domain Hash function using the hash function 𝐻 to map the KA shared key to a JL secret key

Figure 3: Detailed description of the setup phase of our secure and fault-tolerant aggregation protocol

Blidning inputs to ensure privacy. One problem with the TJL
scheme is that its direct use does not guarantee privacy. The prob-

lem stems from the fact that the original scheme JL is privacy-

preserving assuming that the user only provides a single ciphertext

per time period (FL round 𝜏) (see Section 3.6). However, let’s assume

the case where a client sends its protected input with some delay.

The delay may cause the aggregator to request the online clients

to construct the protected zero-value of the assumed failed client.

In this case, two ciphertexts for the same time period are collected

breaking the security assumption of the JL scheme. To deal with

this problem, the client masks its input before encrypting it. The

goal of the mask is to protect any leakage in case two ciphertexts

of the same period are obtained. To remove these masks from the

aggregated value, each client secretly shares its mask with all other

clients. If the client survives the federated learning round, the on-

line clients help construct its blinding mask. Otherwise, the clients

construct the ciphertext of the zero-value using the TJL scheme.

Input vector encoding. The TJL scheme is originally designed to

work with integers. In federated learning applications, FL clients

send a vector of parameters instead of a single one. We therefore

propose a dedicated encoding solution to encode a vector into a

long integer. Each element of the initial vector𝑉 is firstly expanded

by log
2
(𝑛) bits of 0’s at the beginning of the element. Then the

elements of the vector are packed to form a large integer 𝜔 . The

number of elements that 𝜔 can represent corresponds to 𝑝𝑡𝑠𝑖𝑧𝑒

which denotes the plaintext size of the TJL scheme divided by the

actual size of the extended element (i.e ⌊ 𝑝𝑡𝑠𝑖𝑧𝑒

log
2
(𝑅)+log

2
(𝑛) ⌋,𝑅 being

the maximum possible value for vector elements). Note that for

TJL scheme, the plaintext size is equal to the half of the size of the

user key (𝑝𝑡𝑠𝑖𝑧𝑒 =
|𝑠𝑘𝑢 |
2

).

The decoding operation can be simply computed by unpacking

𝜔 into bitmaps of log
2
(𝑅) + log

2
(𝑛).

To evaluate TJL.Protect and TJL.ShareProtect algorithms on

vectors, the user input is first encoded. Then, the algorithm is ap-

plied on encoded integer. In the case where the user input vectors

are too large to be encoded in a single integer of 𝑝𝑡𝑠𝑖𝑧𝑒 size, the vec-

tors are split into multiple vectors each of length ⌊ 𝑝𝑡𝑠𝑖𝑧𝑒

log
2
(𝑅)+log

2
(𝑛) ⌋

and encoded separately. The algorithms are then applied on each

encoded vector. We use a counter 𝑐 to generate a unique time period

for each encoded part.

The protocol steps. In the Encryption step, the client generates

a random seed 𝑏𝑢 . Then, it extends it using a PRG generating the

blinding mask 𝐵𝑢 . The client first blinds its input with the mask

then protects its with TJL.Protect. After that, the client secretly
shares the seed 𝑏𝑢 with other clients and sends its masked and

protected input to the server.

In the Aggregation step, the client learns the list of failed clients.

So, it computes TJL.ShareProtect using the sum of their TJL keys’

shares. Then, it sends to the server the blinding mask share of each

online client and the share of the protected zero-value correspond-

ing to all the failed clients. The server constructs the blinding masks

and the protected zero-value using TJL.ShareCombine. Finally, it
aggregates using TJL.Agg to obtain the blinded sum which is un-

blinded by removing the clients’ masks. The detailed specification

of this phase is provided in Figure 4.

Secure and Fault-Tolerant Aggregation for Federated Learning Conference’17, July 2017, Washington, DC, USA

Secure Aggregation Protocol - Online Phase

• Online - Encryption (step 𝜏):
User 𝑢:
– Sample a random element 𝑏𝑢,𝜏

𝑅←− F (to be used as a seed for a PRG).
– Extend 𝑏𝑢,𝜏 using the PRG: 𝐵𝑢,𝜏 ← 𝑃𝑅𝐺 (𝑏𝑢,𝜏) .
– Protect the private input 𝑋𝑢,𝜏 ∈ Z𝑚𝑅 (after masking it with 𝐵𝑢,𝜏) using TJL scheme: 𝑌𝑢,𝜏 ← TJL.Protect(𝑝𝑝, 𝑠𝑘𝑢 , 𝜏, 𝑋𝑢,𝜏 + 𝐵𝑢,𝜏) .
– Generate 𝑡 -out-of- |U | shares of 𝑏𝑢,𝜏 using the SS scheme: { (𝑣, [𝑏𝑢,𝜏]𝑣) }∀𝑣∈U ← SS.Share(𝑏𝑢,𝜏 , 𝑡,U) .
– For each registered user 𝑣 ∈ U \ {𝑢}, encrypt its corresponding shares 𝑒 (𝑢,𝑣),𝜏 ← AE.Enc(𝑐𝑢,𝑣 ,𝑢 | | 𝑣 | | [𝑏𝑢,𝜏]𝑣)
– If any of the above operations fails, abort.

– Send all the encrypted shares {𝑒 (𝑢,𝑣),𝜏 }∀𝑣∈U (with addressing information 𝑢, 𝑣 as metadata) and the protected input 𝑌𝑢,𝜏 to the server .

Server:
– Collect from each user 𝑢 its encrypted shares { (𝑢, 𝑣, 𝑒 (𝑢,𝑣),𝜏) }∀𝑣∈U and its protected input 𝑌𝑢,𝜏 (or time out).

– Denote with U𝜏𝑜𝑛 ⊂ U the set of online users. Abort if |U𝜏𝑜𝑛 | < 𝑡 .
– Forward to each user 𝑣 ∈ U𝜏𝑜𝑛 its corresponding encrypted shares: { (𝑢, 𝑣, 𝑒 (𝑢,𝑣),𝜏) }∀𝑢∈U𝜏𝑜𝑛 .

• Online - Aggregation (step 𝜏):
User 𝑢:
– Receive the encrypted shares and deduce the list of online users U𝜏𝑜𝑛 from the received shares . Verify that U𝜏𝑜𝑛 ⊂ U and |U𝜏𝑜𝑛 | >= 𝑡 .
– Decrypt all the encrypted secret shares: 𝑣′ | | 𝑢′ | | [𝑏𝑣,𝜏]𝑢 ← AE.Dec(𝑐𝑢,𝑣 , 𝑒 (𝑣,𝑢),𝜏) . Assert that 𝑢 = 𝑢′ ∧ 𝑣 = 𝑣′
– Compute the share of the zero-value corresponding to all failed users: [𝑌 ′𝜏]𝑢 ← TJL.ShareProtect(𝑝𝑝, { [𝑠𝑣]𝑢 }∀𝑣∈U\U𝜏𝑜𝑛 , 𝜏) .
– Abort if any operation failed.

– Send the secret shares of the blinding mask seeds { [𝑏𝑣,𝜏]𝑢 }∀𝑣∈U𝜏𝑜𝑛 and of the share of the protected zero-value [𝑌 ′𝜏]𝑢 to the server.

Server:
– Collect shares from at least 𝑡 honest users. Denote with U𝜏

𝑠ℎ𝑎𝑟𝑒𝑠
⊂ U𝜏𝑜𝑛 the set of users. Abort if |U𝜏

𝑠ℎ𝑎𝑟𝑒𝑠
| < 𝑡 .

– Construct the blinding mask seed of all users 𝑏𝑢,𝜏 ∀𝑢 ∈ U𝜏𝑜𝑛 : 𝑏𝑢,𝜏 ← SS.Recon({ [𝑏𝑢,𝜏]𝑣 }∀𝑣∈U𝜏
𝑠ℎ𝑎𝑟𝑒𝑠

, 𝑡)
– Recompute the blinding mask: 𝐵𝑢,𝜏 ← 𝑃𝑅𝐺 (𝑏𝑢,𝜏)
– Construct the protected zero-value corresponding to all failed users: 𝑌 ′𝜏 ← TJL.ShareCombine({ [𝑌 ′𝜏]𝑣 }∀𝑣∈U𝜏

𝑠ℎ𝑎𝑟𝑒𝑠
, 𝑡)

– Aggregate all the protected inputs of the online clients and the protected zero-value:𝐶𝜏 ← TJL.Agg(𝑝𝑝, 0, 𝜏, {𝑌𝑢,𝜏 }∀𝑢∈U𝜏𝑜𝑛 , 𝑌
′
𝜏 })

– Remove the blinding masks𝐶𝜏 −
∑

∀𝑢∈U𝜏𝑜𝑛
𝐵𝑢,𝜏 =

∑
∀𝑢∈U𝜏𝑜𝑛

𝑋𝑢,𝜏

Figure 4: Detailed description of the online phase of our secure and fault-tolerant aggregation protocol

7 SECURITY ANALYSIS
In this section, we evaluate the security of our secure and fault-

tolerant aggregation protocol and prove that it ensures privacy

of the individual inputs in both the passive and active adversary

setting (see Section 2) given a dedicated threshold 𝑡 of honest clients.

Security in the passive model. In the honest-but-curious model,

we assume that the aggregator correctly follows the protocol but it

colludes with up to 𝑛 − 𝑡 clients. LetU𝑐𝑜𝑟𝑟 be the set of corrupted
clients and C = U𝑐𝑜𝑟𝑟 ∪S (S represents the server). The view of C
is computationally indistinguishable from a simulated view if the

number of corrupted clients is less than the threshold 𝑡 (|U𝑐𝑜𝑟𝑟 | =
𝑛 − 𝑡 < 𝑡). Based on that, the minimum number of honest clients 𝑡

should be strictly larger than half of the number of clients in the

protocol (𝑡 > 𝑛
2
). Hence the protocol can recover from up to

𝑛
2
− 1

client failures.

To prove this argument, we rely on the security of the underlying

cryptographic primitives. In more details, the security of the key

agreement scheme KA ensures that entities in C (who have access

to the public keys of all clients, the private keys of the corrupted

ones, and the transcript of the setup phase) cannot distinguish the

actual pairwise keys of the honest clients from random values.

Additionally, the security of the TJL scheme ensures that entities

in C cannot distinguish protected inputs 𝑌𝑢,𝜏 from random values.

It also ensures that if entities in C have access to no more than 𝑡 − 1
shares of the client secret key 𝑠𝑘𝑢 (i.e. |U𝑐𝑜𝑟𝑟 | < 𝑡), then entities

in C cannot distinguish the shares held by the honest clients from

random values.

Finally, the security of the secret sharing scheme SS ensures that,
if entities in C have access to no more than 𝑡 − 1 shares of the

masking seed 𝑏𝑢,𝜏 (i.e. |U𝑐𝑜𝑟𝑟 | < 𝑡), then they cannot distinguish

the shares held by the honest clients from random values.

Therefore, the view of entities in C at the end of each FL round

𝜏 is computationally indistinguishable from a simulated view. Thus,

the aggregator learns nothing more than the sum of the online

clients’ inputs if |U𝜏𝑜𝑛 | ≥ |U𝜏𝑠ℎ𝑎𝑟𝑒𝑠 | ≥ 𝑡 ; Otherwise the aggregator
learns nothing.

Security in the active model. In the active model, the aggregator

can additionally manipulate its inputs to the protocol. The only mes-

sages the server distributes, other than the clients’ public keys, are

the encrypted shares which are forwarded from and to the clients.

The server cannot modify the values of these encrypted shares

thanks to the underlying authenticated encryption AE scheme.

Therefore, the server’s power in the protocol is limited to refrain-

ing from forwarding some of the shares. This will make clients

reach some false conclusion about the set of online clients in the

protocol. Note, importantly, that the server can give different views

to different clients about which clients have failed. Therefore, the

server can convince a set of honest clients to send the protected

zero-value 𝑌 ′𝜏 corresponding to a client 𝑢 (i.e., U \ U𝜏𝑜𝑛 = {𝑢})
while asking another set of honest clients to send the shares of

the blinding mask 𝑏𝑢,𝜏 . The server should not obtain the protected

zero-value 𝑌 ′𝜏 corresponding to a client 𝑢 and its blinding mask 𝑏𝑢,𝜏
for the same FL round 𝜏 . If that happened, the server can recover

the masked input from 𝑌 ′𝜏 and 𝑌𝑢,𝜏 , then remove the mask using

𝑏𝑢,𝜏 .

Knowing that the server may collude with 𝑛−𝑡 corrupted clients,
it can obtain 𝑛−𝑡 shares of𝑌 ′𝜏 s.t.U\U𝜏𝑜𝑛 = {𝑢} and 𝑛−𝑡 shares of
𝑏𝑢,𝜏 . For the remaining 𝑡 honest clients, the server can manipulate

𝑡
2
clients to think that client 𝑢 has failed (i.e., to send shares of 𝑌 ′𝜏)

Conference’17, July 2017, Washington, DC, USA Mansouri et al.

and the other
𝑡
2
honest clients to think that 𝑢 is online (i.e., to send

shares of 𝑏𝑢,𝜏). Hence, in total, the server can learn a maximum

number of𝑛−𝑡+ 𝑡
2
shares of𝑌 ′𝜏 and𝑏𝑢,𝜏 of the same client. Therefore,

to ensure security, we require that 𝑛−𝑡 + 𝑡
2
< 𝑡 =⇒ 𝑡 > 2𝑛

3
. Hence

the protocol can recover from up to
𝑛
3
− 1 client failures.

Conclusion. If we assume a passive adversary, it is sufficient to

choose 𝑡 > 𝑛
2
to guarantee security. Otherwise, if we assume that

the aggregator actively manipulates the protocol messages, the

threshold parameter should be set to 𝑡 > 2𝑛
3
.

8 SCALABILITY COMPARISONWITH
MASKING-BASED FL

In this section, we conduct a comparative analysis with the solution

in [5] (see Table 1). We first describe the methodology used in [5]

and the main technical differences. Then we analyze the scalabil-

ity of our solution in terms of computation, communication, and

storage at both the client and the server and compare it with [5].

We perform the complexity analysis with respect to the number of

clients 𝑛 and the dimension of the client’s input𝑚. We only present

the analysis of the online phase of both protocols.

8.1 Masking-based Secure Aggregation
Bonawitz et al. Fault-Tolerant Solution [5]. A previous solution

from Bonawitz et al. [5] proposes a fault-tolerant version of secure

aggregation. Authors build their protocol over a masking scheme. In

masking, client protect their inputs using one time-pad encryption

(i.e. modular addition with a random mask). Bonawitz et al. defines

client’s masks such that their sum is equal to zero. The aggregator

can obtain the sum by simply adding the protected inputs. To gen-

erate the mask𝑀𝑢 , each pair of clients (𝑢, 𝑣) agree on a shared key

𝑠𝑢,𝑣 using a key agreement protocol. The client mask 𝑀𝑢 is then

computed from the shared keys {𝑠𝑢,𝑣}∀𝑣∈U as follows:

𝑀𝑢 =
∑︁

∀𝑣∈U:𝑢<𝑣

PRG(𝑠𝑢,𝑣) −
∑︁

∀𝑣∈U:𝑢>𝑣

PRG(𝑠𝑢,𝑣)

where PRG generates a vector whose size equals to the size of

client’s input. To recover from failed clients, the protocol integrates

a t-out-of-n secret sharing [32]. In more detail, each FL client sends

shares of its key agreement secret keys to all other clients. This

way, if client 𝑢 fails, a set of 𝑡 or more clients can help the FL server

reconstruct all the key agreement secret keys of the missing client

and thus obtain 𝑠𝑢,𝑣 ∀ 𝑣 ∈ U𝑜𝑛 . Then, the server can recompute the

mask𝑀𝑢 of the missing client and add it to the aggregate (to ensure

that the masks cancel out). Additionally, the solution adds another

masking layer using a blinding mask 𝐵𝑢 = PRG(𝑏𝑢) generated
from a randomly chosen seed 𝑏𝑢 . The goal of this additional mask

is to prevent the server (after reconstructing𝑀𝑢) from revealing the

clients input𝑋𝑢 . The value𝑏𝑢 is also shared using a 𝑡-out-of-𝑛 secret

sharing. To aggregate, the server computes the sum of the masked

inputs received from the online clients. Then, it reconstructs 𝑏𝑢
for all the online clients (∀𝑢 ∈ U𝑜𝑛) and it reconstruct the key

agreement secret keys for all failed ones (∀𝑣 ∈ U \ U𝑜𝑛). The
aggregate is revealed by first adding𝑀𝑢 of every failed client then

removing the blinding masks 𝐵𝑢 of the online ones.

Table 1: Complexity analysis of the online phase of both
protocols (our protocol vs [5]). 𝑛 is the number of clients and
𝑚 is the dimension of the client’s input.

Ours CCS17 [5]

Computation Client 𝑂 (𝑛2 +𝑚) 𝑂 (𝑛2 + 𝑛𝑚)
Server 𝑂 (𝑛2 + 𝑛𝑚) 𝑂 (𝑛2𝑚)

Communication Client 𝑂 (𝑛 +𝑚) 𝑂 (𝑛 +𝑚)
Server 𝑂 (𝑛2 + 𝑛𝑚) 𝑂 (𝑛2 + 𝑛𝑚)

Storage Client 𝑂 (𝑛 +𝑚) 𝑂 (𝑛 +𝑚)
Server 𝑂 (𝑛2 + 𝑛𝑚) 𝑂 (𝑛2 +𝑚)

Differences with our protocol. The main difference with our pro-

posed protocol is that we replace the masking scheme with a thresh-

old encryption scheme (TJL). The use of TJL improves the perfor-

mance for both the clients and the aggregator thanks to the two

important advantages of our approach over the masking-based one:

• Our approach supports the use of the same encryption keys

for all federated learning rounds. This was not the case in

masking since the masks should be renewed for each round.

The generation of new masks costs each client 𝑛 key agree-

ments and 𝑛 calls to a PRG (extending the seeds to a vector

of size𝑚). These operations add a computation complexity

of 𝑂 (𝑛𝑚) on each client in [5].

• When multiple clients fail, Bonawitz et al. solution requires

the server to reconstruct the key agreement secret key of

each failed client independently. After constructing the se-

cret key, the 𝑛 key agreements are simulated to reconstruct

the mask of each of the failed clients. In contrast, our solu-

tion allows the recovery of the aggregate using only a single

reconstruction operation. This is because the TJL supports

reconstructing a single value (𝑌 ′𝜏) that represents the pro-
tected zero-value on behalf of all failed clients. Consequently,

the scalability of the protocol with respect to the number of

failures is improved by an order of 𝑛 on the server side.

8.2 Scalability at the client
Communication. 𝑂 (𝑛 +𝑚). The communication cost consists of:

In Encryption step, (1) sending 𝑂 (𝑛) shares of 𝑏𝑢,𝜏 and receiving

𝑂 (𝑛) shares, and (2) sending the encrypted client input which is

𝑂 (𝑚); In Aggregation step, (3) sending 𝑂 (𝑛) shares of 𝑏𝑢,𝜏 , and
(4) if at least one client failed, sending the share of the protected

zero-value 𝑌 ′𝑢,𝜏 which is𝑂 (𝑚). In total, the complexity is𝑂 (𝑛 +𝑚)
which is the same as in [5].

Computation. 𝑂 (𝑛2 +𝑚). The computation cost consists of: In

Encryption step, (1) the generation of 𝑡 out of 𝑛 shares of 𝑏𝑢,𝜏 which

is𝑂 (𝑛2), and (2) the encryption of the client’s message𝑋𝑢,𝜏 which is

𝑂 (𝑚); InAggregation step, (3) the encryption of the zero-value using
the secret shares which is 𝑂 (𝑚). Therefore, the total complexity is

𝑂 (𝑛2 +𝑚) which is lower than in [5] (𝑂 (𝑛2 + 𝑛𝑚)).

Storage. 𝑂 (𝑛 +𝑚). The client must store the keys and shares

of each other client as well as the data vector which results in a

storage overhead of 𝑂 (𝑛 +𝑚) which is the same as the one in [5].

Secure and Fault-Tolerant Aggregation for Federated Learning Conference’17, July 2017, Washington, DC, USA

Table 2: Wall-clock running time per client in the online
phase for one FL roundwith different % of client failures. The
number of clients varies 𝑛 = {100, 300, 600} and the dimension
is fixed to𝑚 = 100𝐾 .

Clients % Failures
0% 10% 20% 30%

100 9.8 sec 20.9 sec 20.8 sec 20.8 sec

300 10.9 sec 28.1 sec 27.9 sec 26.6 sec

600 10.5 sec 35.5 sec 35.6 sec 35.8 sec

8.3 Scalability at the server
Communication. 𝑂 (𝑛2 + 𝑛𝑚). The only message exchanges hap-

pening in the protocol is between the server and the clients. There-

fore, the server’s communication cost is 𝑛 times the client’s com-

munication cost. Thus, a complexity of 𝑂 (𝑛2 + 𝑛𝑚) which is the

same as the one in [5].

Computation. 𝑂 (𝑛2 + 𝑛𝑚). The server’s computation cost is in-

significant in Encryption step since the server only forwards mes-

sages. In Aggregation step it consists of: (1) computing the prod-

uct of the received ciphertexts which corresponds to 𝑂 (𝑛𝑚). (2)
reconstructing 𝑡 out of 𝑛 shares of 𝑏𝑢,𝜏 for each online client 𝑢

which is 𝑂 (𝑛2), (3) extending the seed 𝑏𝑢,𝜏 to the dimension of the

client’s input (using PRG) which is 𝑂 (𝑛𝑚), if at least one client
failed, (4) constructing the protected zero-value𝑌 ′𝜏 from its 𝑡 shares

which is𝑂 (𝑛𝑚), and (5) aggregating the ciphertexts and unmasking

the result which is 𝑂 (𝑛𝑚). The total computation cost equals to

𝑂 (𝑛2 + 𝑛𝑚) which is lower than the one in [5] (𝑂 (𝑛2𝑚)).
Note that the reconstruction of 𝑡 out of 𝑛 shares normally costs

𝑂 (𝑛2) since it consists of computing the Lagrange coefficient𝑂 (𝑛2)
then applying the Lagrange formula 𝑂 (𝑛). So, the computation of

𝑡 out of 𝑛 shares for 𝑛 clients should cost 𝑂 (𝑛3). However, for
both protocols we optimize the reconstruction by computing the

Lagrange coefficients only one time per FL round and use them for

all the reconstructions which results in 𝑂 (𝑛2 + 𝑛) ≡ 𝑂 (𝑛2).

Storage. 𝑂 (𝑛2 + 𝑛𝑚). The server storage consists of: 𝑡 shares of
𝑏𝑢,𝜏 for each client 𝑏𝑢,𝜏 which is 𝑂 (𝑛2) and 𝑡 shares of 𝑌 ′𝜏 which
is 𝑂 (𝑛𝑚). Thus, a total of 𝑂 (𝑛2 + 𝑛𝑚) which is higher than the

one in [5] (𝑂 (𝑛2 +𝑚)) due to the larger size of the TJL shares with

respect to shares of the key agreement keys.

9 EXPERIMENTAL EVALUATION
We have implemented a prototype of our protocol and a proto-

type of the protocol presented in [5] using Python programing

language
∗
and conducted an experimental evaluation. We describe

the implementation details of the various cryptographic primi-

tives in Appendix A. We further run several experiments with

our protocol and the one in [5] while varying the number of the

clients 𝑛 = {100, 300, 600}. We also use different dimensions for

the clients’ inputs𝑚 = {1𝐾, 10𝐾, 100𝐾} and different client failure

rates 𝑓 = {0%, 10%, 30%}. The measurements were performed using

a single threaded process on a machine with an Intel(R) Xeon(R)

CPU E5-2697 v4 @ 2.30GHz processor and 32 GB of RAM.

∗
We plan to make these prototypes available for the public

Table 3: Wall-clock running time per client for 𝑇 =

{100, 500, 1000} FL rounds. The number of clients, dimension
and % of failures are fixed to 𝑛 = 600,𝑚 = 100𝐾, 𝑓 = 10%.

FL rounds Total Time Setup Time

100 451.3 sec 9.6 sec (2.1%)

500 2218.3 sec 9.6 sec (0.4%)

1000 4427.0 sec 9.6 sec (0.2%)

Running time for clients. We plot the wall-clock running time

for the clients in both protocols (i.e., our protocol and the one in

[5]) in Figure 5a. Our protocol shows better running time in most

of the measured scenarios. Additionally, our protocol scales better

with respect to the increasing number of clients (i.e., our solution is

×1.5 faster with 100 clients and ×5.5 faster with 600). This confirms

the study in Section 8.2. Notice that our protocol has a constant

overhead when client failures occur w.r.t. the ratio of client failures

(see Table 2). This is expected since a client 𝑢 computes a single

value [𝑌 ′𝜏]𝑢 for all failed clients. We also show the setup time for our

protocol in Table 3. The results show that the offline time becomes

negligible after running a sufficient number of rounds of the FL

protocol.

Running time for the server. We plot the wall-clock running time

for the server in both protocols (i.e., our protocol and the one in

[5]) in Figure 5b. The results show that clients’ failures significantly

affect the performance of the server for both protocols. This is

because the server should run a heavy reconstruction phase. More

importantly, our protocol shows better scalability in terms of ratio

of failures. It is worth to mention that the reconstruction operation

is heavier in our protocol since Lagrange formula is computed on

the exponent. This is why the server overhead is lower in [5] in

the case of few failures (10% of the clients failed). However, this

overhead is constant in our protocol w.r.t. the number of failed

clients (i.e., construction of single value 𝑌 ′𝜏 that represents all

failed clients). Therefore, it is more suitable in the case of many

clients fail. We show the detailed running time (per protocol round)

in Table 4 in Appendix B.

Data transfer. We plot the total data transfer (sent and received)

per client in both protocols (i.e., our protocol and the protocol in [5])

in Figure 5c (the data transfer at the server is equal to that of a client

multiplied by the number of client). When running with clients

input of dimension𝑚 = 10𝐾 , both protocols show bandwidth cost

less than 250 KB per client. Our protocol has larger data transfer in

scenarios with low number of client (𝑛 = 100) but is more efficient

when the number of clients is increased to 𝑛 = 600. On the other

hand, when working with larger dimensions for clients input, our

protocol has larger data transfer. This is mainly because of the

larger size of the ciphertext (two times the size of the plaintext)

with respect to masking. We stress that the data transfer remains

acceptable as it is around 1.2MB for𝑚 = 100𝐾 . We show detailed

measurements per protocol round in Table 5 in Appendix C.

10 DISCUSSION
In this section, we discuss some of the main ideas to improve our

protocol. First, we discuss a practical technique to reduce the com-

putation time for the clients based on a JL scheme property. Second,

Conference’17, July 2017, Washington, DC, USA Mansouri et al.

(a) Client Runtime (b) Server Runtime (c) Bandwidth

Figure 5: The wall-clock running time (a,b) and the total data transfer sent and received (c). The measurements are performed
using a single-threaded python implementation of our solution and the solution in [5] (only the online phase time is shown).
When varying the number of clients, we fix the input dimension to𝑚 = 10K and when varying the dimension we fix the number
of clients to 𝑛 = 600. Bars represent the average value based on 10 runs and the error margins represent the standard deviation.

we discuss how to add additional protection to our protocol to

prevent other types of inference attacks.

Further performance optimisations at the client side. The experi-
mental study in Section 9 shows that clients spend around 45% of

the total computation time in Encryption step of the online phase

(95% in case of no client failures) (see Table 4 in the Appendix).

Most of the computation work in Encryption step corresponds to

the execution of the protection algorithm TJL.Protect. The most

expensive operation in TJL.Protect consists of the computation

of 𝐻 (𝜏)𝑠𝑘𝑢 mod 𝑁 2
(see Equation 1). Since the computation of

this term is independent from the client’s input, this term can be

pre-computed and once the client’s input is known, the latter would

only perform one modular multiplication. Indeed, authors of the

JL scheme [18] call this property “on-the-fly” encryption. In our

protocol, clients can benefit from the idle time when the server is

performing the aggregation in Aggregation step to pre-compute

this value. The improvement of such optimization can reduce the

end-to-end execution time of the protocol.

Further scalability improvements. We presented our protocol in

a complete connected graph of clients (i.e. all clients send secret

shares to all the other clients on the network). We believe that a

fully connected graph is not necessary to guarantee correctness

and security. A user can be simply be connected to 𝑘 neighbors

such that all users form a connected graph. Bell et al. [3] propose a

method to build these graphs with 𝑘 = 𝑙𝑜𝑔(𝑛). The authors apply
their solution to Bonawitz et al. [5] protocol and achieved a better

scalability where 𝑂 (𝑛) operations are replaced by 𝑂 (𝑘). The same

approach can be applied to our protocol as it is independent from

the encryption scheme being used.

Protecting the aggregated model. In federated learning, the ag-

gregated machine learning model is public. Consequently, secure

aggregation remains vulnerable against inference attacks on the

aggregated model [34]. Although these attacks do not leak infor-

mation originating from a specific client dataset (thanks to secure

aggregation), such a problem remains important. Several solutions

such as [19, 38] investigate the use of differential privacy techniques

[12] as an additional protection layer for secure aggregation in the

context of federated learning. These techniques are complementary

to our scheme and thus can also be integrated to our solution.

11 RELATEDWORKS
Several solutions have been integrating secure aggregation (SA)

with federated learning. These solutions rely on the use vari-

ous cryptographic techniques including secure masking, multi-

input functional encryption (MIFE), secret sharing, and additively-

homomorphic encryption (AHE). Masking-based SA solutions such

as [5, 4, 19, 41, 17] provide an efficient protection algorithm but

incur high computation overhead since they usually require the

execution of a new key setup process for each federated learning

round. On the other hand, MIFE-based SA [42, 40] enables the com-

putation of weighted sums using the inner product function with

lightweight operations. Similar to masking-based solutions, client

keys should be generated for each FL round and therefore such

solutions relies on an online trusted key dealer. Additionally, there

exist SA solutions based on Shamir’s secret sharing including [2, 11,

21, 27] that are fault-tolerant and decentralized by design. Nevert-

theless, these solutions incur a significant communication overhead.

Last but not least, AHE-based secure aggregation solutions were

initially used for smart-meter applications [16, 33, 22]. While such

solutions allow for the use of a long-term key, they incur large

communication overhead due to the large ciphertext size. To deal

with this limitation, different solutions [23, 43, 30] propose to batch

the client’s model in federated learning. For instance, BatchCrypt

[43] proposes an efficient encoding technique to quantize the ma-

chine learning parameters before encrypting them with the Paillier

Secure and Fault-Tolerant Aggregation for Federated Learning Conference’17, July 2017, Washington, DC, USA

encryption scheme [29]. This encoding technique can be ported to

our scheme to further reduce the communication overhead.

Failures of FL clients is a well known problem for secure ag-

gregation schemes. Few solutions have been proposed to address

this problem in the context of federated learning. For SA solutions

based on MIFE, HybridAlpha [42] proposed to replace the weights

of failed users by zeros. On the other hand, Bonawitz et al. [5]

proposed the use of secure masking. Unfortunately, both solutions

inherit the drawback of their underlying building block and thus

require a complex key management process at runtime. We believe

that our solution is the first secure and fault-tolerant aggregation

scheme based on AHE for federated learning applications.

12 CONCLUSIONS AND FUTUREWORK
We have designed a secure and fault-tolerant aggregation protocol

for federated learning. Firstly, we constructed a threshold-variant

of Joye-Libert [18] secure aggregation scheme (TJL). The secure
federated learning protocol uses the TJL scheme to protect FL

clients’ inputs and securely aggregate them even in the presence

of up to
𝑛
3
failures. We show that our scheme outperforms the

state-of-the-art fault-tolerant secure aggregation [5] in terms of

computational cost by 𝑛 orders of complexity (𝑛 being the number

of total clients in the protocol).

As part of our future work, we aim to cover stronger threat

models. Namely, we would like to ensure the correctness of the

computation of the aggregate value when dealing with malicious

users and/or aggregator.

REFERENCES
[1] Gergely Ács and Claude Castelluccia. 2011. I have a dream! (differentially

private smart metering). In Information Hiding. Springer Berlin Heidelberg.

[2] Constance Beguier and Eric W. Tramel. 2020. Safer: sparse secure aggregation

for federated learning. (2020). arXiv: 2007.14861 [stat.ML].
[3] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lep-

oint, and Mariana Raykova. 2020. Secure single-server aggregation with

(poly)logarithmic overhead. In Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’20). Association for

Computing Machinery.

[4] Kallista A. Bonawitz et al. 2019. Towards federated learning at scale: system

design. CoRR, abs/1902.01046.
[5] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, AntonioMarcedone, H. Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.

Practical secure aggregation for privacy-preserving machine learning. In (CCS

’17). Association for Computing Machinery, New York, NY, USA, 1175–1191.

isbn: 9781450349468.

[6] Keith Bonawitz, Fariborz Salehi, Jakub Konečný, BrendanMcMahan, andMarco

Gruteser. 2019. Federated learning with autotuned communication-efficient

secure aggregation. In 2019 53rd Asilomar Conference on Signals, Systems, and
Computers.

[7] Léon Bottou. 2004. Stochastic learning. In Advanced Lectures on Machine Learn-
ing. Lecture Notes in Artificial Intelligence, LNAI 3176. Olivier Bousquet and

Ulrike von Luxburg, (Eds.) Springer Verlag, Berlin, 146–168. http://leon.bottou

.org/papers/bottou-mlss-2004.

[8] Ivan Damgård, Mads Jurik, and Jesper Buus Nielsen. 2010. A generalization of

paillier’s public-key system with applications to electronic voting. International
Journal of Information Security, 9, 6, (Dec. 2010).

[9] W. Diffie and M. Hellman. 2006. New directions in cryptography. IEEE Trans.
Inf. Theor.

[10] Tassos Dimitriou and Mohamad Khattar Awad. 2016. Secure and scalable aggre-

gation in the smart grid resilient against malicious entities. Ad Hoc Networks,
50.

[11] Ye Dong, Xiaojun Chen, Liyan Shen, and Dakui Wang. 2020. Eastfly: efficient

and secure ternary federated learning. Computers & Security, 94, 101824.
[12] Cynthia Dwork. 2006. Differential privacy. In Automa, Languages and Program-

ming. Springer Berlin Heidelberg.

[13] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence

Bassham, E. Roback, and James Dray. 2001. Advanced encryption standard

(aes). en. (2001-11-26 2001).

[14] Morris J. Dworkin. 2007. SP 800-38D. Recommendation for Block Cipher Modes

of Operation: Galois/Counter Mode (GCM) and GMAC. Tech. rep. Gaithersburg,

MD, USA.

[15] Ahmed Roushdy Elkordy and A. Salman Avestimehr. 2020. Secure aggregation

with heterogeneous quantization in federated learning. (2020).

[16] Zekeriya Erkin and Gene Tsudik. 2012. Private computation of spatial and

temporal power consumption with smart meters. In Applied Cryptography and
Network Security. Springer Berlin Heidelberg, 561–577.

[17] Xiaojie Guo, Zheli Liu, Jin Li, Jiqiang Gao, Boyu Hou, Changyu Dong, and Thar

Baker. 2021. Verifl: communication-efficient and fast verifiable aggregation for

federated learning. IEEE Transactions on Information Forensics and Security, 16.
[18] Marc Joye and Benoît Libert. 2013. A scalable scheme for privacy-preserving

aggregation of time-series data. In Financial Cryptography and Data Security.
Ahmad-Reza Sadeghi, (Ed.) Springer Berlin Heidelberg.

[19] Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021. The distributed discrete

gaussian mechanism for federated learning with secure aggregation. In Pro-
ceedings of the 38th International Conference on Machine Learning (Proceedings

of Machine Learning Research). Vol. 139. PMLR.

[20] Ferhat Karakoç, Melek Önen, and Zeki Bilgin. 2021. Secure aggregation against

malicious users. In Proceedings of the 26th ACM Symposium on Access Control
Models and Technologies (SACMAT ’21). Association for Computing Machinery.

[21] Youssef Khazbak, Tianxiang Tan, and Guohong Cao. 2020. Mlguard: mitigating

poisoning attacks in privacy preserving distributed collaborative learning. In

2020 29th International Conference on Computer Communications and Networks
(ICCCN).

[22] Klaus Kursawe, George Danezis, and Markulf Kohlweiss. 2011. Privacy-friendly

aggregation for the smart-grid. In Privacy Enhancing Technologies. Springer
Berlin Heidelberg.

[23] 2019. Secure model fusion for distributed learning using partial homomorphic
encryption. Policy-Based Autonomic Data Governance. Springer International
Publishing.

[24] E. Meijering. 2002. A chronology of interpolation: from ancient astronomy to

modern signal and image processing. Proceedings of the IEEE.
[25] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE Symposium on Security and Privacy (SP), 691–706. doi: 10.1109/SP.2019.00
029.

[26] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy

analysis of deep learning: passive and activewhite-box inference attacks against

centralized and federated learning. In 2019 IEEE Symposium on Security and
Privacy (SP).

[27] Thien Duc Nguyen et al. 2021. FLGUARD: secure and private federated learning.

CoRR, abs/2101.02281.
[28] Takashi Nishide and Kouichi Sakurai. 2011. Distributed paillier cryptosystem

without trusted dealer. In Information Security Applications. Yongwha Chung
and Moti Yung, (Eds.) Springer Berlin Heidelberg, Berlin, Heidelberg, 44–60.

isbn: 978-3-642-17955-6.

[29] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree

residuosity classes. In Advances in Cryptology — EUROCRYPT ’99. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[30] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho

Moriai. 2018. Privacy-preserving deep learning via additively homomorphic

encryption. IEEE Transactions on Information Forensics and Security, 13.
[31] Tal Rabin. 1998. A simplified approach to threshold and proactive rsa. In Pro-

ceedings of the 18th Annual International Cryptology Conference on Advances in
Cryptology (CRYPTO ’98). Springer-Verlag, Berlin, Heidelberg.

[32] Adi Shamir. 1979. How to share a secret. Commun. ACM.

[33] Elaine Shi, T.-H Chan, Eleanor Rieffel, Richard Chow, and Dawn Song. 2011.

Privacy-preserving aggregation of time-series data. In vol. 2. (Jan. 2011).

[34] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.

Membership inference attacks against machine learning models. In 2017 IEEE
Symposium on Security and Privacy (SP).

[35] Jinhyun So, Ramy E. Ali, Basak Guler, Jiantao Jiao, and Salman Avestimehr.

2021. Securing secure aggregation: mitigating multi-round privacy leakage in

federated learning. CoRR, abs/2106.03328.
[36] Jinhyun So, Başak Göler, and A. Salman Avestimehr. 2021. Byzantine-resilient

secure federated learning. IEEE Journal on Selected Areas in Communications,
39.

[37] Jinhyun So, Başak Güler, and A. Salman Avestimehr. 2021. Turbo-aggregate:

breaking the quadratic aggregation barrier in secure federated learning. IEEE
Journal on Selected Areas in Information Theory, 2.

[38] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig,

Rui Zhang, and Yi Zhou. 2019. A hybrid approach to privacy-preserving feder-

ated learning. In Proceedings of the 12th ACMWorkshop on Artificial Intelligence
and Security (AISec’19). Association for Computing Machinery.

https://arxiv.org/abs/2007.14861
http://leon.bottou.org/papers/bottou-mlss-2004
http://leon.bottou.org/papers/bottou-mlss-2004
https://doi.org/10.1109/SP.2019.00029
https://doi.org/10.1109/SP.2019.00029

Conference’17, July 2017, Washington, DC, USA Mansouri et al.

[39] Thijs Veugen, Thomas Attema, and Gabriele Spini. 2019. An implementation of

the paillier crypto system with threshold decryption without a trusted dealer.

Cryptology ePrint Archive, Report 2019/1136. https://ia.cr/2019/1136. (2019).

[40] Danye Wu, Miao Pan, Zhiwei Xu, Yujun Zhang, and Zhu Han. 2020. Towards

efficient secure aggregation for model update in federated learning. In GLOBE-
COM 2020 - 2020 IEEE Global Communications Conference.

[41] Guowen Xu, Hongwei Li, Sen Liu, Kan Yang, and Xiaodong Lin. 2020. Verifynet:

secure and verifiable federated learning. IEEE Transactions on Information
Forensics and Security, 15.

[42] Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, and Heiko Ludwig. 2019.

Hybridalpha: an efficient approach for privacy-preserving federated learning.

In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security
(AISec’19). Association for Computing Machinery.

[43] Chengliang Zhang, Suyi Li, Junzhe Xia,WeiWang, Feng Yan, and Yang Liu. 2020.

Batchcrypt: efficient homomorphic encryption for cross-silo federated learn-

ing. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX
Association.

https://ia.cr/2019/1136

Secure and Fault-Tolerant Aggregation for Federated Learning Conference’17, July 2017, Washington, DC, USA

A IMPLEMENTATION DETAILS
We use the same implementation and parameters for the building

blocks of our protocol and the protocol proposed in [5].

• Pseudo-Random Generator (PRG): We use AES encryption

[13] in the counter mode with 128 bits key size. Thus, the

blinding mask seed (𝑏𝑢) is 128-bit long.

• Key Agreement (KA): We use Elliptic-Curve Diffie-Hellman

over the NIST P-256 curve. For the hash function we use

SHA256.

• Secret Sharing (SS): We use the finite fields F𝑝 (integers mod-

ulo 𝑝 where 𝑝 is prime) in the implementation of Shamir’s

secret sharing. To share the seed of the blinding mask (𝑏𝑢)

(128 bits) we set 𝑝 = 2
129 − 1365. To share the DH secret key

(256 bits) we set 𝑝 = 2
257 − 2233.

• Authenticated Encryption (AE): We use AES-GCM [14] with

a key size of 256 bits.

• Threshold Joye-Libert Scheme (TJL): We use 1024 bits for the

public parameter 𝑁 . Thus, the user keys are of size 2048 bits.

For the hash function 𝐻 : Z → Z∗
𝑁 2

, we implement it as a

Full-Domain Hash using a chain of eight SHA256 hashes.

Additionally, for the secret sharing over the integers scheme

ISS used by TJL.SKShare, we set the security parameter 𝜎

to 128 bits.

B DETAILED MEASUREMENTS OF THE
RUNNING TIME

Table 4: Wall-clock running time for the clients and the
server for our protocol. The dimension is fixed to𝑚 = 10000.

Clients Failures Registeration KeySetup Encryption Aggregation

C
lie
nt

100

0% 1.08 ms 1607 ms 976 ms 18.6 ms

30% 0.86 ms 1583 ms 966 ms 1071 ms

300

0% 0.90 ms 4730 ms 1234 ms 56.8 ms

30% 0.94 ms 4718 ms 1233 ms 1642 ms

600

0% 0.89 ms 9202 ms 1733 ms 109 ms

30% 0.92 ms 8754 ms 1630 ms 2346 ms

Se
rv
er

100

0% 0.005 ms 1.98 ms 1.97 ms 1235 ms

10% 0.007 ms 1.75 ms 1.7 ms 25196 ms

30% 0.009 ms 1.63 ms 1.65 ms 19176 ms

300

0% 0.018 ms 16.6 ms 16.2 ms 7887 ms

10% 0.009 ms 16.9 ms 15.9 ms 294910 ms

30% 0.009 ms 17.4 ms 16.1 ms 226290 ms

600

0% 0.016 ms 109 ms 102 ms 41057 ms

10% 0.017 ms 116 ms 105 ms 1357778 ms

30% 0.014 ms 96.7 ms 100 ms 962070 ms

C DETAILED MEASUREMENTS OF THE DATA
TRANSFER

Table 5: Data transfer per client for our protocol. The dimen-
sion is fixed to𝑚 = 10000.

Clients Failures Registration KeySetup Encryption Aggregation

100

0%

sent 0.13 KB 32.84 KB 62.47 KB 1.96 KB

rcvd − KB 45.73 KB − KB 5.46 KB

total 0.13 KB 78.57 KB 62.47 KB 7.42 KB

30%

sent 0.13 KB 32.84 KB 62.46 KB 58.81 KB

rcvd − KB 45.73 KB − KB 3.81 KB

total 0.13 KB 78.57 KB 62.46 KB 62.62 KB

300

0%

sent 0.13 KB 135.95 KB 79.00 KB 5.86 KB

rcvd − KB 174.62 KB − KB 16.50 KB

total 0.13 KB 310.57 KB 79.00 KB 22.36 KB

30%

sent 0.13 KB 135.95 KB 79.00 KB 67.09 KB

rcvd − KB 174.62 KB − KB 11.53 KB

total 0.13 KB 310.57 KB 79.00 KB 78.62 KB

600

0%

sent 0.13 KB 400.79 KB 97.30 KB 11.72 KB

rcvd − KB 478.13 KB − KB 33.05 KB

total 0.13 KB 878.92 KB 97.30 KB 44.77 KB

30%

sent 0.13 KB 400.78 KB 97.30 KB 72.96 KB

rcvd − KB 478.13 KB − KB 23.12 KB

total 0.13 KB 878.91 KB 97.30 KB 96.08 KB

	Abstract
	1 Introduction
	2 Background and Threat Model
	3 Preliminaries
	3.1 Pseudo Random Generator
	3.2 Shamir's Secret Sharing
	3.3 Secret Sharing Over the Integers
	3.4 Key Agreement Scheme
	3.5 Authenticated Encryption
	3.6 Joye-Libert Secure Aggregation Scheme

	4 Our Approach
	5 Threshold Joye-Libert Scheme
	6 Fault-Tolerant Secure Aggregation using TJL
	6.1 The Setup Phase
	6.2 The Online Phase

	7 Security Analysis
	8 Scalability Comparison with Masking-based FL
	8.1 Masking-based Secure Aggregation
	8.2 Scalability at the client
	8.3 Scalability at the server

	9 Experimental Evaluation
	10 Discussion
	11 Related Works
	12 Conclusions and Future Work
	A Implementation Details
	B Detailed Measurements of the Running Time
	C Detailed Measurements of the Data Transfer

